https://www.profitablegatecpm.com/q3ywukurct?key=eba7922351deebc0e2d76908a0576480 "zone name","placement name","placement id","code (direct link)" educationcaptia.blogspot.com,Popunder_1,20330949,"" Engineers physics: Nature of physics

Tuesday, September 5, 2023

Nature of physics

 

By physicassistion.blogspot.com 

Physics is a branch of science whose primary objects of study are matter and energy. Discoveries of physics find applications throughout the natural sciences and in technology. Physics today may be divided loosely into classical physics and modern physics.

        

1.1 Two research laboratories. (a) According to legend, Galileo investigated falling bodies by dropping them from the Leaning Tower in Pisa, Italy, and he studied pendulum motion by observing the swinging of the chandelier in the adjacent cathedral. (b) The Large Hadron Collider (LHC) in Geneva, Switzerland, the world’s largest particle accelerator, is used to explore the smallest and most fundamental constituents of matter. This photo shows a portion of one of the LHC’s detectors (note the worker on the yellow platform).
(a)

(b)


The nature of physics:

Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns that relate these phenomena. These patterns are called physical theories or, when they are very well established and widely used, physical laws or principles. CAUTION The meaning of the word “theory” Calling an idea a theory does not mean that it’s just a random thought or an unproven concept. Rather, a theory is an explanation of natural phenomena based on observation and accepted fundamental principles. An example is the well-established theory of biological evolution, which is the result of extensive research and observation by generations of biologists. ❙ To develop a physical theory, a physicist has to learn to ask appropriate questions, design experiments to try to answer the questions, and draw appropriate conclusions from the results. Figure 1.1 shows two famous facilities used for physics experiments. Legend has it that Galileo Galilei (1564–1642) dropped light and heavy objects from the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether their rates of fall were the same or different. From examining the results of his experiments (which were actually much more sophisticated than in the legend), he made the inductive leap to the principle, or theory, that the acceleration of a falling body is independent of its weight. The development of physical theories such as Galileo’s often takes an indirect path, with blind alleys, wrong guesses, and the discarding of unsuccessful theories in favor of more promising ones. Physics is not simply a collection of facts and principles; it is also the process by which we arrive at general principles that describe how the physical universe behaves. No theory is ever regarded as the final or ultimate truth. The possibility always exists that new observations will require that a theory be revised or discarded. It is in the nature of physical theory that we can disprove a theory by finding behavior that is inconsistent with it, but we can never prove that a theory is always correct. Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly do not fall at the same rate. This does not mean that Galileo was wrong; it means that his theory was incomplete. If we drop the feather and the cannonball in a vacuum to eliminate the effects of the air, then they do fall at the same rate. Galileo’s theory has a range of validity: It applies only to objects for which the force exerted by the air (due to air resistance and buoyancy) is much less than the weight. Objects like feathers or parachutes are clearly outside this range. Often a new development in physics extends a principle’s range of validity. Galileo’s analysis of falling bodies was greatly extended half a century later by Newton’s laws of motion and law of gravitation.



No comments:

Post a Comment

Recent

 Sometimes the average velocity is all you need to know about a particle's motion. For example, a race along a straight line is really a...